SECTION 1 리뷰
01 - Data preprocess , EDA , Data visualization
02 - Statistics
03 - Linear Algebra
04 - Project (게임 데이터 분석 기반 기획안 작성)
01 - KEYWORD
- git
- github - Repository , Fork , Clone , Commit , Pull Request
- pandas - concat , merge , pandas 조금더 능숙하게 다루기 (1)
- Tidy data - melt (wide->tidy) , pivot table (tidy->melt)
- data frame
- EDA
- Feature engineering
- 문자타입 type casting - Float , int , string
- Data Visualization - seaborn , matplot , plotly
시작,EDA,Data Science_Day1 | khalidpark2029.tistory.com/3 |
Feature Engineering,데이터전처리_Day2 | khalidpark2029.tistory.com/4 |
Feature Engineering,형변환_Day2(2) | khalidpark2029.tistory.com/5 |
Data Manipulation,concat,merge,melt_Day3 | khalidpark2029.tistory.com/7 |
25 pandas tricks_Day3(2) | khalidpark2029.tistory.com/6 |
Data Manipulation_Day3(3)_Tidy data | khalidpark2029.tistory.com/14 |
Data Manipulation_Day3(4)_ggplot,그래픽문법 |
khalidpark2029.tistory.com/13 |
Data Manipulation_Day3(5)_pipe & chaining | khalidpark2029.tistory.com/15 |
Data Visulaize,plot,seaborn_Day4 | khalidpark2029.tistory.com/10 |
판다스 데이터프레임에서 1줄만 잘랐을때 series가 왜 될까? | khalidpark2029.tistory.com/16 |
Data Slice , loc , iloc | khalidpark2029.tistory.com/20 |
(1) pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
10 minutes to pandas — pandas 1.2.1 documentation
This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook. Time series pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.
pandas.pydata.org
02 - KEYWORD
- 기술통계 - boxplot , violinplot
- 추리통계 - 샘플링
- 가설검정
- 표본평균 - 표본오차 , 표본편차 , 표본의수n
- student t - test
- One sample t-test - Two sample t-test
- 귀무가설 (Null Hypothesis) - 대안가설 (Alternative Hypothesis)
- 신뢰도 - 95% , 99%
- 신뢰구간
- P-Value
- One tail test - Two tail test
- non - parametric
- chi-square test - One sample (stats.chi2.cdf) , two sample (chi2_contingency)
- 자유도 (Degree of Freedom)
- 큰 수의 법칙
- 중심극한정리 (CLT)
- 총 확률의 법칙
- 베이지안 이론
Hypothesis Test,귀무,대안,T-test_Day6 | khalidpark2029.tistory.com/18 |
Hypothesis Test,One sample,Two sample_Day6(2) | khalidpark2029.tistory.com/19 |
A/B 테스트의 기본개념_Day6(3) | khalidpark2029.tistory.com/54 |
student.t.distribution/스튜던트t검정_Day6(4) | khalidpark2029.tistory.com/55 |
Hypothesis Test,자유도,one tail,two tail,chi square _2_Day7 | khalidpark2029.tistory.com/21 |
Hypothesis Test, T-test, type of error, parametric_2_Day7(2) | khalidpark2029.tistory.com/22 |
1sample vs 2sample chisquare 코드_Day7(3) | khalidpark2029.tistory.com/50 |
Empirical Analysis. 경험적 분석(실증적 분석)_Day7(4) | khalidpark2029.tistory.com/51 |
콜모고로프-스미르노브 검정_Day7(5) | khalidpark2029.tistory.com/52 |
Multivariate Test,다변수테스트,A/B테스트와 비교_Day7(6) | khalidpark2029.tistory.com/53 |
Confidence interval & CLT_Day8 | khalidpark2029.tistory.com/25 |
큰수의법칙,CLT,신뢰구간_Day8(2) | khalidpark2029.tistory.com/26 |
신뢰구간의 개념 한번더_Day8(3) | khalidpark2029.tistory.com/49 |
Bayesian_Day9 | khalidpark2029.tistory.com/30 |
베이지안적 통계 이론_Day9(2) | khalidpark2029.tistory.com/31 |
t-test란 무엇인가? (완전정복) |
khalidpark2029.tistory.com/34 |
Convert two-tailed to a one-tailed test | khalidpark2029.tistory.com/31 |
표준오차,표준편차,표본평균,모평균 통계용어 정리 | khalidpark2029.tistory.com/28 |
np.random.poisson & np.random.binomial | khalidpark2029.tistory.com/27 |
P-value & Q-value | khalidpark2029.tistory.com/24 |
표본 크기가 커지면 발생할 수 있는 p-value 오류 | khalidpark2029.tistory.com/23 |
03 - KEYWORD
- 벡터 - 스칼라 , 벡터의 크기 , 내적 (Dot) ,
- 매트릭스 - 차원 , transpose , 정사각 매트릭스
- 단위 매트릭스 - I
- 행렬식 (Determinant)
- 역행렬
- 분산 - 모집단의 분산 , 샘플의 분산
- 표준편차
- 공분산 (Covariance) - positive , negative
- 상관계수 (Correlation coefficient)
- 수직(orthogonality)
- 단위벡터
- span
- 선형관계의 벡터 - 선형관계에 있지 않은 벡터
- basis
- rank
- Linear projection
- 벡터변환 - transpose
- 고유벡터 - eigenvector
- 고유값 - eigenvalue
- 고차원의 문제 - 고차원의 시각화의 문제
- 차원축소
- feature selection , feature extraction
- PCA
- 클러스터 - Kmeans 클러스터 , 중심점(centroid)
선형대수 Linear Algebra_Day11 | khalidpark2029.tistory.com/35 |
Linear Algebra2_Day12 | khalidpark2029.tistory.com/36 |
선형대수학을 위한 벡터 복습_Day12(2) | khalidpark2029.tistory.com/38 |
공분산,상관계수,span,basis,rank_Day12(3) | khalidpark2029.tistory.com/39 |
eigenvector,eigenvalue,고윳값,고유벡터_Day13 | khalidpark2029.tistory.com/42 |
벡터변환,고유벡터,고유값_Day13(2) | khalidpark2029.tistory.com/43 |
PCA의원리_Day13(3) | khalidpark2029.tistory.com/44 |
선형대수와 매트릭스의 시작.기본개념_Day13(4) | khalidpark2029.tistory.com/48 |
HCA(하이어리컬, 클러스터)_Day14 | khalidpark2029.tistory.com/46 |
클러스터, scree plot, k-means, ML_Day14(2) | khalidpark2029.tistory.com/47 |
04 - Project
- 게임 데이터 분석 기반 기획안 작성
게임데이터분석 및 기획안 작성 프로젝트_Day16~19 | khalidpark2029.tistory.com/60 |
완성)게임데이터분석 및 기획안 작성 프로젝트_Day20 | khalidpark2029.tistory.com/61 |
피드백)게임데이터분석 및 기획안 작성 프로젝트_Day20 | khalidpark2029.tistory.com/62 |
이미지 출처 : medium.muz.li/guide-to-data-visualization-comparison-part-1-678382ceef00
Your guide to Data Visualization for Comparison
A stepwise approach to getting better at data visualization
medium.muz.li
www.edx.org/course/math-of-data-science-linear-algebra
RiceX Linear Algebra Part 1
This course is an introduction to linear algebra. You will discover the basic objects of linear algebra – how to compute with them, how they fit together theoretically, and how they can be used to solve real problems.
www.edx.org
m.dexlabanalytics.com/blog/bayes-theorem-application-in-r-and-python
Bayes’ Theorem – Application in R and Python
In the discussion of conditional probability it has been indicated that revising probability when new information is obtained is an important phase of probability analysis. This is how Bayes' theorem is applied to programming languages like R and Python.
m.dexlabanalytics.com
'AI월드 > ⚙️AI BOOTCAMP_Section 1' 카테고리의 다른 글
피드백)게임데이터분석 및 기획안 작성 프로젝트_Day20 (0) | 2021.01.26 |
---|---|
프로젝트)게임데이터분석 및 기획안 작성_Day16~19 (0) | 2021.01.19 |
student.t.distribution/스튜던트t검정_Day6(4) (0) | 2021.01.17 |
A/B 테스트의 기본개념_Day6(3) (0) | 2021.01.17 |
Multivariate Test,다변수테스트,A/B테스트와 비교_Day7(6) (0) | 2021.01.17 |
댓글