본문 바로가기
AI월드/⚙️AI BOOTCAMP_Section 1

np.random.poisson & np.random.binomial

by khalidpark 2021. 1. 7.

 

np.random.poisson(lam,size)

 

일정한 단위 시간, 혹은 공간에서 무작위로 발생하는 사건의 평균 회수인 λ(lambda)가 20인 포아송 분포로 부터 100개의 난수를 만들어보겠습니다. 

# (1-3) 포아송 분포 (Poisson Distribution)
# np.random.poisson(lam=1.0, size=None)
# Poisson distribution is the limit of the binomial distribution for large N

In [20]: np.random.seed(seed=100)

 

In [21]: rand_pois = np.random.poisson(lam=20, size=100)

 

In [22]: rand_pois

Out[22]:

array([21, 19, 22, 14, 26, 15, 25, 25, 19, 25, 15, 24, 21, 13, 26, 23, 21,
        16, 24, 17, 18, 18, 15, 18, 22, 28, 21, 18, 17, 31, 23, 13, 20, 19,
        24, 17, 20, 13, 19, 16, 16, 21, 16, 21, 19, 20, 20, 19, 19, 20, 13,
        29,  9, 13, 20, 29, 15, 15, 21, 20, 21, 18, 16, 20, 23, 18, 22, 14,
        19, 20, 18, 17, 20, 24, 20, 15, 19, 19, 25, 17, 19, 27, 20, 17, 12,
        22, 16, 23, 17, 11, 15, 19, 16, 21, 21, 25, 26, 23, 15, 25])

포아송 분포(Poisson distribution)는 일정한 단위 시간, 단위 공간에서 어떤 사건이 랜덤하게 발생하는 경우에 사용할 수 있는 이산형 확률분포입니다. 

가령, 1시간 동안 은행에 방문하는 고객의 수, 1시간 동안 콜센터로 걸려오는 전화의 수, 1달 동안 경부고속도로에서 교통사고가 발생하는 건수, 1년 동안 비행기가 사고가 발생하는 건수, 책 1페이지당 오탈자가 발생하는 건수, 반도체 웨이퍼 25장 당 불량 건수 등과 같이 단위 시간 혹은 단위 공간에서의 랜덤한 사건에 대해 사용하게 됩니다.

 

포아송 분포에서 모수 λ (lambda 라고 발음함)는 일정한 단위 시간 또는 단위 공간에서 랜덤하게 발생하는 사건의 평균 횟수를 의미합니다.

 

 

np.random.binomial (n,p,size)

 

앞(head) 또는 뒤(tail) (n=1) 가 나올 확률이 각 50%(p=0.5)인 동전 던지기를 20번(size=20) 해보았습니다. 

 

# (1) 이산형 확률 분포 (Discrete Probability Distribution)
# (1-1) 이항분포 (Binomial Distribution) : np.random.binomial(n, p, size)
#       : 복원 추출 (sampling with replacement)
#       : n an integer >= 0 and p is in the interval [0,1]

 

In [11]: np.random.binomial(n=1, p=0.5, size=20)

Out[11]: array([0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])

 

In [12]: sum(np.random.binomial(n=1, p=0.5, size=100) == 1)/100

Out[12]: 0.46999999999999997

 


출처 : rfriend.tistory.com/284

 

[Python NumPy] 무작위 표본 추출, 난수 만들기 (random sampling, random number generation)

이번 포스팅에서는 시간과 비용 문제로 전수 조사를 못하므로 표본 조사를 해야 할 때, 기계학습 할 때 데이터셋을 훈련용/검증용/테스트용으로 샘플링 할 때, 또는 다양한 확률 분포로 부터 데

rfriend.tistory.com

출처 : rfriend.tistory.com/101

 

R 포아송 분포 (Poisson distribution) : pois()

이산형 확률 분포에는  - 이항분포 (Binomial distribution)    : binom()  - 초기하분포 (Hypergeometric distribution)    : hyper()  - 포아송 분포 (Poisson distribution)    : pois() 등이 있습니..

rfriend.tistory.com

 

728x90

댓글